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Abstract

This chapter is an introduction to the psychology of causal inference using a computational perspective, 

with the focus on causal discovery. It explains the nature of the problem of causal discovery and 

illustrates the goal of the process with everyday and hypothetical examples. It reviews psychological 

research under two approaches to causal discovery, an associative approach and a causal approach that 

incorporates causal assumptions in the inference process. The latter approach provides a framework 

within which to answer different questions regarding causal inference coherently. The chapter ends 

with a consideration of causality as unfolding over time. We conclude with a sketch of future directions 

for the field.
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Why Causality?
Th e central question of this chapter is: “How can 

any intelligent system put on Planet Earth, if given 
cognitive resources and types of information simi-
lar to those available to us, discover how the world 
works so that it can best achieve its goals?” Before 
we attempt to answer this question, let us imagine 
that our cognition were diff erent in various respects. 
First, suppose we were unable to learn associations 
between events (i.e., detect statistical regularity in 
the occurrence of events). We would be unable to 
predict any events, causal or otherwise. For exam-
ple, we would be unable to predict that if the traf-
fi c light turns red, we should stop or an accident is 
likely to happen, or that if we hear a knock on our 
door, someone will be on the other side when we 
open the door. Nor would we be able to predict the 
weather, even imperfectly. We would be unable to 
learn the sequences of sound in language or music, 
or the meaning of words. We would behave as if 
we had prosopagnosia, unable to relate our parents’ 

faces, or the face of the person we have been dating 
for the past month, to their past history. A nonas-
sociative world would be grim.

Now, imagine a world where we were able to 
learn associations but unable to reason about causes 
and eff ects. What would it be like? In that world, 
for a child growing up on a farm who has always 
experienced sunrise after the rooster crows, if the 
rooster is sick one morning and does not crow, she 
would predict that the sun would not rise until 
the rooster crows. Similarly, if the rooster has been 
deceived into crowing, say, by artifi cial lighting in 
the middle of the night, the child would predict 
that the sun would rise soon after. Notice that under 
normal conditions noncausal associations do enable 
one to reliably predict a subsequent event from an 
observation (e.g., sunrise from a rooster’s crowing, 
a storm soon to come from a drop in the baromet-
ric reading, or from ants migrating uphill). Th ey do 
not, however, support predictions about the event 
(e.g., sunrise) when the observation (crowing or no 
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crowing) is produced by an action or an extraneous 
cause (respectively, artifi cial light and the rooster’s 
sickness). An associative world without causation 
would be exasperating.

Consider how often we would be wrong, and 
how ineffi  cient we would be, were we to store all 
associations, both causal and noncausal. We illus-
trate the problem with the causal tree in Figure 12.1. 
In the fi gure, each node represents a variable, and 
each arrow represents a causal relation. Th ere are 
four causal links, but six additional associations (the 
dotted lines).1 Th ese additional associations can be 
inferred from the causal links, and thus are redun-
dant. In an associative world, if information on any 
of the six extra associations is salient (e.g., as infor-
mation on a rooster’s crowing and sunrise might 
be), they would be indistinguishable from the causal 
links. Th us, not only would the extra associations 
be ineffi  cient to store, many would yield erroneous 
predictions based on actions. For example, node 
D in the fi gure is linked by a single arrow, but by 
three additional associations, to nodes B, C, and 
E; manipulating any of these variables would not 
lead to D, the “desired” outcome predicted by these 
three associations.

Finally, not only would we be unable to achieve 
our goals, but we would be unable to structure an 
otherwise chaotic fl ux of events into meaningful 
episodes. We explain events by causation. Returning 
to our storm example, whereas we might explain 
that a car skidded and rolled down the mountain-
side because of the rainstorm, it would be odd to 
explain that the car skidded because of the low 

barometric reading. Causal explanations are uni-
versal, as anthropologists who study everyday nar-
ratives across cultures have observed; they serve to 
imbue life events with an orderliness, to demystify 
unexpected events, and establish coherence (Ochs & 
Capps, 2001).

Predicting the Consequences of Actions 
to Achieve Goals: A Framework for Causal 
Learning, Category Formation, and 
Hypothesis Revision

For the just mentioned reasons, it is easy to see 
why it is important to distinguish between causa-
tion and mere association. A less obvious reason, 
one that has implications for the formulation of the 
problem to be solved, is that whereas associations 
are observable, causal relations are inherently unob-
servable and can only be inferred. For example, one 
can observe the number of lung cancer patients 
among cigarette smokers and among nonsmokers 
and see the association between cigarette smoking 
and lung cancer, but the association can be causal or 
noncausal. It may, for example, be due to confound-
ing by the higher incidence of radon in the smokers’ 
dwellings, and the exposure to radon is what caused 
the smokers’ lung cancer. Th e challenge is how to 
encapsulate causal relations, even though they are 
unobservable, so that the causal knowledge can be 
applied to best achieve desired outcomes.

We have so far implicitly assumed that cause-
and-eff ect variables, such as “sunrise,” “drop in 
barometric reading,” and “storm,” are predefi ned, 
given to the causal learner, and only the relations 
between them are to be discovered. A more real-
istic description of the situation is: In order for 
our causal knowledge to be generalizable from the 
learning context (e.g., prior experience, whether 
one’s own or that of others, shows that icy roads 
cause skidding) to the application context (I don’t 
want my car to skid, so I will wait until the ice has 
melted before I drive), we construct a representation 
of the world in which cause-and-eff ect variables are 
so defi ned that they enable ideally invariant causal 
relations to be constructed. As the philosopher C. I. 
Lewis (1929) observed, “Categories are what obey 
laws.” Defi ning the objects, events, and categories 
linked by causal relations is part of the problem of 
causal discovery. Fortunately for cognitive psychol-
ogists studying human causal discovery, some of the 
work defi ning variables is already taken care of by 
evolution, prewired into our perceptual system and 
emotions. For example, we see a rooster as fi gure 
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Fig. 12.1 A causal tree and the implied associative links. Nodes 
represent variables, labeled by letters. Arrows represent direct 
causal links. Dotted lines represent implied associations, which 
include indirect causal links as well as associations between direct 
and indirect eff ects of a common cause.
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against the ground of the farm landscape. Strong 
gusts of wind alarm us, and getting wet in the rain is 
unpleasant. But there is defi nitely remaining work; 
for example, what determines that “ants migrating 
uphill” should be defi ned as a variable?

Whenever we apply causal knowledge to achieve 
a goal, we are assuming that the causal relations in 
question remain invariant from the learning context 
to the application context. Because of our limited 
causal knowledge, however, a causal relation that 
we assume to be invariant would no doubt in fact 
often change (e.g., a scientist might hypothesize 
“vitamin E has antioxidant eff ects” but fi nd instead 
that whereas natural foods rich in vitamin E have 
antioxidant eff ects, vitamin E pills do not). Th e 
assumption of causal invariance in our everyday 
application of causal knowledge might seem too 
strong. Although simplistic as a static hypothesis, 
however, this assumption is rational as a defeasible 
default within the dynamic process of hypothesis 
testing and hypothesis revision. Given our limited 
access to information at any particular moment, 
the criterion of causal invariance serves as a com-
pass aimed at formulating the simplest explanation 
of a phenomenon that allows invariance to obtain 
(e.g., the scientist might search for other substances 
in natural foods that in conjunction with vitamin E 
consistently produce the eff ects). Observed devia-
tion from the default indicates a need for hypothesis 
revision, a change in direction aimed at capturing 
causal invariance (Carroll & Cheng, 2010).

Cheng (2000) showed that an alternative assump-
tion that would also justify generalization of a causal 
relation regarding an outcome to a new context is 
that enabling conditions (causal factors in the con-
textual background interacting with the hypoth-
esized cause) and preventive causes that occur in 
the background (all of which are often unobserved) 
occur just as frequently in the generalization context 
as in the learning context. She also showed that with 
respect to the accuracy of generalization to new con-
texts, the two assumptions are equivalent. In the 
rest of our chapter, we use causal invariance (which 
we term “independent causal infl uence” when we 
defi ne it mathematically) because it is the simpler of 
the two equivalent conceptions.

Now that we have considered some goals and 
constraints of causal inference, let us rephrase the 
question of causal learning with respect to those 
goals and constraints: How can any intelligent 
agent given the information and resources available 
to humans discover ideally invariant causal relations 

that support generalization from the learning con-
text to an application context? In particular, would 
it suffi  ce to have a powerful statistical process that 
detects regularities among events but lacks any a 
priori assumptions about how the world works? 
Because humans have limited access to information, 
an accompanying question is, What hypothesis test-
ing and revision process would allow the ideally 
invariant causal relations to be constructed?

By posing our question in terms of discovery, we 
by no means rule out the possibility that there exist 
some innate domain-specifi c biases. Classic studies 
by Garcia, McGowan, Ervin, and Koelling (1968) 
demonstrated two such biases. In each of four 
groups of rats, one of two cues, either a novel size 
or a novel fl avor of food pellets, was conditionally 
paired with either gastrointestinal malaise induced 
by X-ray or with pain induced by electrical shock. 
Th e combination of fl avor and illness produced a 
conditioned decrement in the amount consumed 
but that of the size of the pellet and illness did not. 
Conversely, the combination of size and pain pro-
duced hesitation before eating, but fl avor and pain 
did not. Apparently, the novelty had to be of the 
right kind for eff ective causal learning regarding the 
malaise and shock to occur.

Most of what we do know about the world, how-
ever, must have been acquired due to experience. 
How else could we have come to know that expo-
sure to the sun causes tanning in skin but causes 
bleaching in fabrics? Or come to know that billiard 
ball A in motion hitting billiard ball B at rest would 
not jump over B, rebound leaving B still, or explode 
(Hume, 1739/1888)? Notice that it is not necessary 
for the causal learner to know how sunlight causes 
tanning in skin or bleaching in fabrics to discover 
that it does. Neither was it necessary, for that mat-
ter, for the rats to know how the X-ray or electricity 
caused their respective eff ects for their learning to 
occur. We will return to the issue of adding inter-
vening nodes in a causal network to explain how an 
outcome is achieved via a causal mechanism.

Proposed Solutions: Two Dominant 
Approaches

We have only gone so far as posing the problem 
to be solved. Hopefully, posing the problem clearly 
will mean much of the work has been done. In the 
rest of this chapter, we review proposed solutions 
according to two dominant approaches: the asso-
ciative approach, including its statistical variants, 
and the causal approach. We follow each of these 
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accounts with a review of main empirical tests of 
the approach. (For a discussion of how the percep-
tual view [Michotte, 1946/1963], the mechanism 
view [Ahn, Kalish, Medin, & Gelman, 1995], and 
the coherence view [Th agard, 2000] relate to these 
approaches, see Buehner and Cheng [2005].) We 
then broaden our scope to consider the role of tem-
poral information in causal learning. We end the 
chapter with a sketch of future research directions.

Th e Associative Approach
An intuitive approach that has dominated psy-

chological research on learning is the associative 
approach (e.g., Allan & Jenkins, 1980; Jenkins & 
Ward, 1965; Rescorla & Wagner, 1972), which 
traces its roots to the philosopher David Hume 
(1739/1888). Hume made a distinction between 
analytic and empirical knowledge, and argued that 
causal knowledge is empirical. Only experience tells 
us what eff ect a cause has. Th e strong conviction of 
causality linking two constituent events is but a men-
tal construct. Th e problem of causal learning posed 
by Hume radically shaped subsequent research on 
the topic and set the agenda for the study of causal 
learning from a cognitive science perspective. Both 
the associative and causal approaches are predicated 
on his posing of the problem.

To Hume, the relevant observed aspects of experi-
ence that give rise to the mentally constructed causal 
relations were the repeated association between the 
observed states of a cause and its eff ect, their tem-
poral order and contiguity, and spatial proximity. 
Our examples have illustrated that one can predict 
a future event from a covariation—the concerted 
variation among events—provided that causes 
of that event remain unperturbed. Predictions of 
this kind are clearly useful; we appreciate weather 
reports, for example. To early associative theorists, 
causality is nothing more than a fi ctional epiphe-
nomenon fl oating unnecessarily on the surface of 
indisputable facts.2 After all, causal relations are 
unobservable. In fact, Karl Pearson, one of the 
fathers of modern statistics, subscribed to a positiv-
ist view and concluded that calculating correlations 
is the ultimate and only meaningful transformation 
of evidence at our disposal: “Beyond such discarded 
fundamentals as ‘matter’ and ‘force’ lies still another 
fetish amidst the inscrutable arcana of modern sci-
ence, namely, the category of cause and eff ect” 
(Pearson, 1911, p. iv).

But, as we saw earlier, mere associations are inad-
equate for predicting the consequences of actions 

and would also be ineffi  cient to store. Th us, in addi-
tion to dissecting the traditional associative view to 
understand its shortcomings, we will also consider 
a more viable augmented variant of the associative 
view, one similar to how scientists infer causation. 
Th e augmented view assumes that rational causal 
learning requires not only a sophisticated detector of 
covariations among events but also the use of actions 
as a causality marker: When the observed states of 
events are obtained by an action, by oneself or oth-
ers, intervening in the normal course of events, the 
observed associations are causal; otherwise, they are 
noncausal. After all, one can observe that actions are 
what they are; there is therefore no deviation from 
Hume’s constraint that causal discovery begins with 
observable events as input. In entertaining this vari-
ant, we are taking the perspective of the design of an 
intelligent causal learner on our planet, rather than 
adhering to how the associative view has been tradi-
tionally interpreted. Th is more viable variant of the 
associative view implicitly underlies the use of asso-
ciative statistics in typical tests of causal hypotheses 
in medicine, business, and other fi elds. It retains the 
strong appeal of the associative approach, namely, 
its objectivity. Other things being equal, positing 
unobservable events, as the causal view does, seems 
objectionable.

A growing body of research is dedicated to the role 
of intervention in causal learning, discovery, and rea-
soning (e.g., Blaisdell, Sawa, Leising, & Waldmann, 
2006; Gopnik et al., 2004; Lagnado & Sloman, 
2004; Steyvers, Tenenbaum, Wagenmakers, & 
Blum, 2003). Indeed, the general pattern reported 
is that observations based on intervention allow 
causal inferences that are not possible based on mere 
observations.

A Statistical Model
For situations involving only one varying can-

didate cause, an infl uential decision rule for more 
than four decades has been the ΔP rule:

 ΔP = P(e+|c+) − P(e+|c−) (1)

according to which the strength of the relation 
between binary causes c and eff ects e is determined 
by their contingency or probabilistic contrast—the 
diff erence between the probabilities of e in the pres-
ence and absence of c (see, e.g., Allan & Jenkins, 
1980; Jenkins & Ward, 1965). ΔP is estimated by 
relative frequencies. In our equations, we denote the 
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“presence” value of a binary variable by a “+” super-
script and the “absence” value by a “–” superscript 
(e.g., c+ denotes the presence of c). Figure 12.2 dis-
plays a standard contingency table where cells A and 
B respectively, represent the frequencies of the occur-
rence, and nonoccurrence, of e in the presence of c; 
cells C and D represent, respectively, the frequencies 
the occurrence, and of nonoccurrence, of e in the 
absence of c.

If ΔP is noticeably positive, then c is thought 
to produce e; if it is noticeably negative, then c 
is thought to prevent e; and if ΔP is not notice-
ably diff erent from zero, then c and e are thought 
not to be causally related to each other. Several 
modifi cations of the ΔP rule to include various 
parameters have been proposed (e.g., Anderson & 
Sheu, 1995; Perales & Shanks, 2007; Schustack & 
Sternberg, 1981; White, 2002). By allowing extra 
degrees of freedom, these modifi ed models fi t cer-
tain aspects of human judgment data better than 
the original rule. Another type of modifi cation is 
to compute the ΔP value of a candidate cause con-
ditioned on constant values of alternative causes 
(Cheng & Holyoak, 1995). Th is modifi cation 
allows the model to better account for the infl uence 
of alternative causes (as illustrated later).  Like all 
other psychological models of causal learning, all 
variants of the ΔP model assume that the candidate 
causes are perceived to occur before the eff ect in 
question.

An Associationist Model
In the domain of animal learning, an organism’s 

capacity to track contingencies in its environ-
ment has long been of central interest, and appar-
ent parallels between conditioning and causal 

learning have led many researchers (see Shanks & 
Dickinson, 1987; for a review see De Houwer 
& Beckers, 2002) to search for explanations of 
human causal learning in neural-network models 
that specify the algorithm of learning. Th e most 
infl uential associationist theory, the Rescorla-
Wagner (RW) model (Rescorla & Wagner, 1972), 
and all its later variants, is based on an algo-
rithm of error correction driven by a discrepancy 
between the expected and actual outcomes. For 
each learning trial where a cue was presented the 
model specifi es

 ΔVCS = αCS βUS (λ − ΣV) (2)

where ΔV is the change in the strength of a 
given CS-US association on a given trial (CS 
stands for conditioned stimulus, e.g., a tone; US 
stands for unconditioned stimulus, e.g., a foot-
shock), α and β represent learning rate param-
eters refl ecting the saliencies of the CS and US, 
respectively, λ stands for the actual outcome of 
each trial (usually 1.0 if it is present and 0 if it is 
absent), and ΣV is the expected outcome defi ned 
as the sum of all associative strengths of all CSs 
present on that trial. 

For situations involving only one varying cue, its 
mean weight at equilibrium according to the RW 
algorithm has been shown to equal ΔP if the value 
of β remains the same when the US is present and 
when it is absent for the λ values just mentioned 
(Chapman & Robins, 1990; Danks, 2003). In other 
words, this simple and intuitive algorithm elegantly 
explains why causal learning is a function of contin-
gency. It also explains a range of results for designs 
involving multiple cues, such as blocking (see sec-
tion on “Blocking” to follow), conditioned inhibi-
tion, overshadowing, and cue validity (Miller, Barnet, 
& Grahame, 1995).

Blocking: Illustrating an Associationist Explanation
“Blocking” (Kamin, 1969) occurs after a cue (A) 

is established as a perfect predictor (A+, with “+” 
representing the occurrence of the outcome), fol-
lowed by exposure to a compound consisting of A 
and a new, redundant, cue B. If AB is also always 
followed by the outcome (AB+), cue B receives very 
little conditioning; its conditioning is blocked by cue 
A. According to RW, A initially acquires the maxi-
mum associative strength supported by the stimulus. 
Because the association between A and the outcome 
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Fig. 12.2 A standard 2 x 2 contingency table; a through d are 
labels for event types resulting from factorial combination of the 
presence and absence of cause c and eff ect e.
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is already at asymptote when B is introduced, there 
is no error left for B to explain, hence the lack of 
conditioning to B. What RW computes is the ΔP for 
B conditioned on the constant presence of A. Shanks 
(1985) replicated the same fi nding in a causal reason-
ing experiment with human participants, although 
the human responses seemed to refl ect uncertainty 
of the causal status of cue B rather than certainty that 
it is noncausal (e.g., Waldmann & Holyoak, 1992).

Failure of the RW Algorithm to Track Covariation 
When a Cue Is Absent

However, Shanks’ (1985) results also revealed 
evidence for backward blocking; in fact, there is evi-
dence for backward blocking even in young children 
(Gopnik et al., 2004). In this procedure, the order of 
learning phases is simply reversed; participants fi rst 
learn about the perfect relation between AB and the 
outcome (AB+), and subsequently learn that A by 
itself is also a perfect predictor (A+). Conceptually, 
forward and backward blocking are identical, at 
least from a causal perspective. A causal explana-
tion might go: If one knows that A and B together 
always produce an eff ect, and one also knows that 
A by itself also always produces the eff ect, one can 
infer that A is a strong cause. B, however, might be 
a cause, even a strong one, or noncausal; its causal 
status is unclear. Typically, participants express such 
uncertainty with low to medium ratings relative to 
ratings for control cues that have been paired with 
the eff ect an equal number of times (see Lu, Yuille, 
Liljeholm, Cheng, & Holyoak, 2008, for a review).

Beyond increasing susceptibility to attention 
and memory biases (primacy and recency; see, e.g., 
Dennis & Ahn, 2001), there is no reason why the 
temporal order in which knowledge about AB and 
A is acquired should play a role from a rational 
standpoint. Th is is not so for the RW model, how-
ever. Th e model assumes that the strength of a cue 
can only be updated when that cue is present. In 
the backward blocking paradigm, however, partici-
pants retrospectively alter their estimate of B on the 
A+ trials in phase 2. In other words, the ΔP of B, 
conditioned on the presence of A, decreases over a 
course of trials in which B is actually absent, and the 
algorithm therefore fails to track its covariation.

Several modifi cations of RW have been proposed to 
allow the strengths of absent cues to be changed, for 
instance, by setting the learning parameter α negative 
on trials where the cue is absent: Van Hamme and 
Wasserman’s (1994) modifi ed RW model, Dickinson 
and Burke’s modifi ed sometimes-opponent-process 

model (1996), and the comparator hypothesis 
(Denniston, Savastano, & Miller, 2001; Miller & 
Matzel, 1988; Stout & Miller, 2007). Such modi-
fi cations can explain backward blocking and some 
other fi ndings showing retrospective revaluation (for 
an extensive review of modifi cations to associative 
learning models applicable to human learning see 
De Houwer & Beckers, 2002). But these modifi ca-
tions also oddly predict that one will have diffi  culty 
learning that there are multiple suffi  cient causes of an 
eff ect. For example, if one drinks tea by itself and fi nds 
it quenching, but one sometimes drinks both tea and 
lemonade, then learning subsequently that lemonade 
alone can quench thirst will cause one to unlearn that 
tea can quench thirst. Carroll, Cheng, and Lu (2010) 
found that in such situations human subjects do not 
revise causal relations for which they have unambigu-
ous evidence (e.g., that tea is quenching).

Causal Inference: Empirical Findings 
on Humans and Rats

Association does not equal causation, as we illus-
trated earlier and as every introductory statistics text 
warns. We now review how humans and rats reason 
causally rather than merely associatively.

The Direction of Causality
Th e concept of causality is fundamentally directional 

(Reichenbach, 1956) in that causes produce eff ects, 
but eff ects cannot produce causes. Th us, whereas we 
might say that, given the angle of the sun at a certain 
time of the day, the height of a fl agpole explains the 
length of its shadow on the ground, it would be odd 
to say the reverse.3 A straightforward demonstration 
that humans make use of the direction of the causal 
arrow was provided by Waldmann and Holyoak 
(1992), who reasoned that only causes, but not eff ects, 
should “compete” for explanatory power. If P is a per-
fect cause of an outcome A, and R, a redundant cue, 
is only presented preceding A in conjunction with P, 
one has no basis of knowing to what extent, if at all, R 
actually produces A. Consequently, the predictiveness 
of R should be depressed relative to P in a predictive 
situation. But if P is instead a consistent eff ect of A, 
there is no reason why R cannot also be an equally 
consistent eff ect of A. Alternative causes need to be 
kept constant to allow causal inference, but alternative 
eff ects do not. Consequently, the predictiveness of R 
should not be depressed in a diagnostic situation.

Th is asymmetry prediction was tested with the 
blocking design, using scenarios to manipulate 
whether a variable is interpreted as a candidate 
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cause or as an eff ect. Participants in Waldmann and 
Holyoak’s (1992) Experiment 3 had to learn the 
relation between several light buttons and the state 
of an alarm system. Th e instructions introduced 
the buttons as causes for the alarm in the predictive 
condition, but as potential consequences of the state 
of the alarm system in the diagnostic condition.

Waldmann and Holyoak found exactly the pat-
tern of results they predicted: Th ere was blocking 
in the predictive condition, but not the diagnostic 
condition. Th ese results reveal that humans make 
use of the direction of the causal arrow. Follow-up 
work from Waldmann’s lab (Waldmann & Holyoak, 
1997; Waldmann, 2000, 2001) as well as others 
(Booth & Buehner, 2007; López, Cobos, & Caño, 
2005) has demonstrated that the asymmetry in cue 
competition is indeed a robust fi nding.

Ceiling Effects
One might think that augmenting statistical 

models with intervention would solve the problem 
of the directionality of causation. But although 
intervention generally allows causal inference, 
it does not guarantee it. Consider a food allergy 
test that introduces samples of food into the body 
by needle punctures on the skin. Th e patient may 
react with hives on all punctured spots, and yet 
one may not know whether the patient is allergic 
to any of the foods. Suppose her skin is allergic 
to needle punctures, so that hives appear also on 
punctured spots without food. In this example, 
there is an intervention, but no causal inference 
regarding food allergy seems warranted (Cheng, 
1997). More generally, interventions are subject 
to the problem of the well-known placebo eff ect, in 
which the intended intervention is accompanied by 
a concurrent intervention (as adding allergens into 
the bloodstream is accompanied by the puncturing 
the skin), resulting in confounding. Our example 
illustrates that intervention does not guarantee 
causal inference. Not only is intervention insuf-
fi cient for diff erentiating causation from associa-
tion, it is also unnecessary. Mariners since ancient 
times have known that the position and phase of 
the moon is associated with the rising and falling 
of the tides (Salmon, 1989). Notably, they did not 
consider the association causal, and they had no 
explanation for the ebb and fl ow of the tides, until 
Newton proposed his law of universal gravitation. 
No intervention on the moon and the tides is pos-
sible, but there was nonetheless a dramatic change 
in causal assessment.

A revealing case of the distinction between covari-
ation and causation that does not involve confound-
ing has to do with what is known in experimental 
design as a ceiling eff ect. We illustrate this eff ect with 
the preventive version of it (a principle never cov-
ered in courses on experimental design); the under-
lying intuition is so powerful it needs no instruction. 
Imagine that a scientist conducts an experiment to 
fi nd out whether a new allergy drug relieves migraine 
as a side eff ect. She follows the usual procedure and 
administers the medicine to an experimental group 
of patients, while an equivalent control group 
receives a placebo. At the end of the study, the 
scientist discovers that none of the patients in the 
experimental group but also none of the patients 
in the control group suff ered from migraine. Th e 
eff ect never occurred, regardless of the intervention. 
If we enter this information into the ΔP rule, we 
see that P(e+|c+) = 0 and P(e+|c−) = 0, yielding ΔP 
= 0. According to the ΔP rule and RW, this would 
indicate that there is no causal relation, that is, the 
drug does not relieve migraine. Would the scientist 
really conclude that? No, the scientist would instead 
recognize that she has conducted a poor experiment 
and hence withhold judgment on whether the drug 
relieve migraine. If the eff ect never occurs in the 
fi rst place, how can a preventive intervention be 
expected to prove its eff ectiveness?

Even rats seem to appreciate this argument 
(Zimmer-Hart & Rescorla, 1974). For associative 
models, however, when an inhibitory cue (i.e., one 
with negative associative strength) is repeatedly pre-
sented without the outcome, so that the actual out-
come is 0 whereas the expected outcome is negative, 
the prediction is that the cue reduces its strength 
toward 0. Th at is, in a noncausal world, we would 
unlearn our preventive causes whenever they are not 
accompanied by a generative cause. For example, if 
we inoculate child after child with polio vaccine in a 
country, and there is no occurrence of polio in that 
country, we would come to believe that the polio vac-
cine does not function anymore, rather than merely 
that it is not needed. To the contrary, even for rats, the 
inhibitory cue retains its negative strength (Zimmer-
Hart & Rescorla, 1974). In other words, when an 
outcome in question never occurs, either when a con-
ditioned inhibitory cue is present or when it is not, 
rats apparently treat the zero ΔP value as uninforma-
tive, retaining the inhibitory status of the cue. In this 
case, in spite of a discrepancy between the expected 
and actual outcomes, there is no revision of causal 
strength.
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Notice that given the aforementioned hypothetical 
migraine-relief experiment, from the same exact data, 
showing that migraine never occurs one can conclude 
that the drug does not cause migraine rather than with-
hold judgment. Th us, given the exact same covaria-
tion, the causal learner can simultaneously have two 
conclusions depending on the direction of infl uence 
under evaluation (generative vs. preventive). Wu and 
Cheng (1999) conducted an experiment that showed 
that beginning college students, just like experienced 
scientists, do and do not refrain from making causal 
inferences in the generative and preventive ceiling 
eff ects situations depending (in opposite ways) on 
the direction of infl uence to be evaluated. We are not 
aware of any convincing modifi cation of association-
ist models that can accommodate the fi nding.

Definition of Causal Invariance: 
Beyond Augmentation of Associations 
With Intervention and Other 
Principles of Experimental Design

Th e same problem that leads to the ceiling 
eff ect—namely, the lack of representation of causal 
relations—manifests itself even when all the princi-
ples of experimental design are obeyed. Even in that 
case, the associative view makes anomalous predic-
tions. Liljeholm and Cheng (2007, Experiment 2) 
presented college students with a scenario involving 
three studies of a single specifi c cue A (Medicine 
A, an allergy medicine) as a potential cause of an 
outcome (headache as a potential side-eff ect of the 
allergy medicine). In the scenario, allergy patients 
in the studies were randomly assigned to an experi-
mental group that received Medicine A and a con-
trol group that received a placebo. In the three 
studies, the probability of the outcome was higher 
by, respectively, ¼, ½, and ¾ in the experimental 
group than in the control group (i.e., ΔP = ¼, ½, 
and ¾; see Table 12.1). In a varying-base-rate con-
dition, the base rate of headache diff ered across the 
three studies. In a constant-base-rate condition, the 

base rate of the eff ect remained constant: Headache 
never occurred without the medicine. Th e students 
were asked to assess whether the medicine inter-
acted with unobserved causes in the background 
across the studies or infl uenced headache the same 
way across them. As intuition suggests, more stu-
dents in the constant-base-rate condition than in 
the varying-base-rate condition (13 out of 15, vs. 
5 out of 15, respectively) judged the medicine to 
interact with the background causes.

Because the changes in covariation, as measured 
by associative models such as ΔP (Jenkins & Ward, 
1965) or RW (Rescorla & Wagner, 1972), were the 
same across conditions, these associative models 
could not explain the observed pattern of judgments. 
Th us, even when there is an eff ective intervention and 
there is no violation of the principles of experimental 
design, a statistical account will not suffi  ce. We return 
to discuss the implications of these results later.

Intervention Versus Observation
Following analogous work on humans (Waldmann 

& Hagmayer, 2005), Blaisdell et al. (2006) reported 
a result that challenges associative models: Rats are 
capable of distinguishing between observations and 
interventions. In Experiment 1, during a Pavlovian 
learning phase rats were trained on two interspersed 
pairs of associations: A light cue (L) is repeatedly 
followed by either a tone (T) or food (F). If the 
rats learned that L is a common cause of T and F 
(see Fig. 12.5a), then in the test phase, observing T 
should lead them to infer that L must have occurred 
(because L was the only cause of T), which should 
in turn lead them to predict F (because L causes F). 
Th e number of nose pokes into the food bin mea-
sures prediction of F. Consider an alternative con-
dition in which during a test phase the rats learn 
that pressing on a newly introduced lever turns on 
T. Because generating T by means of an alternative 
cause does not infl uence its cause (L), turning T 
on by pressing a lever should not lead the rats to 

Table 12.1. Relative Frequencies of Headache and Model Values for Each Hypothetical Study and Each Condition 
in Liljeholm and Cheng (2007, Experiment 2)

Study 1 Study 2 Study 3

e | no A e | A e | no A e | A e | no A e | A

Varying-base rate 16/24 22/24 8/24 20/24 0/24 18/24

Constant base rate 0/24 6/24 0/24 12/24 0/24 18/24
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predict F. After the learning phase, rats were allo-
cated to either the observation or the intervention 
condition. Th e occurrences of T in the test phase 
were equated across the two conditions by yoking 
the observation rats to the intervention rats, so that 
when a rat in the intervention condition pressed 
the lever and T followed, a rat in the observation 
condition heard T at the same time, independently 
of their lever pressing. L and F never occurred dur-
ing the test phase. Remarkably, the observation rats 
nose-poked more often than the intervention rats 
in the interval following T, even though during the 
learning phase, T and F never occurred simultane-
ously on the same trial.

Because all occurrences of L, T, and F were 
identical across the observation and intervention 
groups, associations alone cannot explain the dif-
ference between observing T and intervening to 
obtain T. Even if augmented with the assumption 
that interventions have special status, so that the 
pairing between lever pressing and T, for example, 
is learned at a much faster rate than purely observed 
pairings, there would still be no explanation for 
why the intervention rats apparently associate T 
with L less than did the observation rats. We will 
return to discuss a causal account of the observed 
diff erence.

A Causal Approach
A solution to the puzzles posed by the distinc-

tion between covariation and causation is to have 
a leap of faith that causal relations exist, even 
though they are unobservable (Kant, 1781/1965). 
Th is leap of faith distinguishes the diverse vari-
ants of the causal approach from all variants of 
the associative approach. Some psychologists have 
proposed that human causal learning involves posit-
ing candidate causal relations and using deductive 
propositional reasoning to arrive at possible expla-
nations of observed data (De Houwer, Beckers, 
& Vandorpe, 2005; Lovibond, Been, Mitchell, 
Bouton, & Frohardt, 2003; Mitchell, De Houwer, 
& Lovibond, 2009). Others (Gopnik et al., 2004) 
have proposed that human causal learning is 
described by causal Bayes nets, a formal framework 
in which causal structures are represented as directed 
acyclic graphs (Pearl, 2000; Spirtes, Glymour, & 
Scheines, 1993/2000; see Sloman, 2005, for a more 
accessible exposition). Th e graphs consist of arrows 
connecting some nodes to other nodes, where the 
nodes represent variables and each arrow repre-
sents a direct causal relation between two variables; 

“acyclic” refers to the constraint that the paths 
formed by the arrows are never loops. Others have 
proposed a variant of causal Bayes nets that makes 
stronger causal assumptions; for example, assume as 
a defeasible default that causes do not interact, and 
revise that assumption only when there is evidence 
against it. Th e stronger assumptions enable the 
learner to construct causal knowledge incrementally 
(Buehner, Cheng, & Cliff ord, 2003; Cheng, 1997, 
2000; Griffi  ths & Tenenbaum, 2005; Lu, Yuille, 
Liljeholm, Cheng, & Holyoak, 2008; Waldmann, 
Cheng, Hagmayer, & Blaisdell, 2008).

Th ese variants of the causal view, in addition 
to their explicit representation of causal relations, 
share a rational perspective (see Chater & Oaksford, 
Chapter 2). Th us, they all have a goal of inferring 
causal relations that best explain observed data. Th ey 
all make use of deductive inference (for examples of 
the role of analytic reasoning in empirical learning, 
see Mermin, 2005; Shepard, 2008). It may be said 
that they all assume that the causal learner deduces 
when to induce! Our focus in this chapter is on 
explaining basic ways in which the causal approach 
provides a solution to what appears to be impasses 
from an associative perspective.

A Theory of Causal Induction
We use Cheng (1997)’s causal power theory (also 

called the power PC theory, short for “a causal 
power theory of the probabilistic contrast model”) 
to illustrate how a causal theory explains many of 
the puzzles mentioned earlier. Th is theory starts 
with the Humean constraint that causality can only 
be inferred, using observable evidence (e.g., covaria-
tions, temporal ordering, and spatial information) 
as input to the reasoning process. It combines that 
constraint with Kant’s (1781/1965) postulate that 
reasoners have a priori notions that types of causal 
relations exist in the universe.

Th is unifi cation can best be illustrated with an 
analogy. Th e relation between a causal relation and 
a covariation is like the relation between a scientifi c 
theory and a model. Scientists postulate theories 
(involving unobservable entities) to explain models 
(i.e., observed regularities or laws); the kinetic theory 
of gases, for instance, is used to explain Boyle’s law. 
Boyle’s law describes an observable phenomenon, 
namely that pressure × volume = constant (under 
certain boundary conditions), and the kinetic theory 
of gases explains in terms of unobservable entities 
why Boyle’s law holds (gases consist of small particles 
moving at a speed proportional to their temperature, 
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and pressure is generated by the particles colliding 
with the walls of the container). Likewise, a causal 
relation is the unobservable entity that reasoners 
strive to infer in order to explain observable regu-
larities between events. Th is distinction between a 
causal relation as an unobserved, distal, postulated 
entity and covariation as an observable, proximal 
stimulus property implies that there can be situa-
tions where evidence is observable, but inference is 
not licensed, and the goal of causal inference thus 
cannot be met. Specifi cally, this means that the 
desired distal unknown, such as causal strength, is 
represented as a variable (cf. Doumas & Hummel, 
Chapter 4; Holyoak & Hummel, 2000), separately 
from covariation, allowing situations where cova-
riation has a defi nite value (e.g., 0, as in the ceiling 
eff ect), but the causal variable has no value.

How, then, does the causal power theory (Cheng, 
1997) go beyond the proximal stimulus and explain 
the various ways in which covariation does not 
imply causation? Th e path through the derivation of 
the estimation of causal strength reveals the answers. 
For inferring simple (i.e., elemental) causal relations, 
the theory partitions all causes of eff ect e into the 
candidate cause in question, c, and a, a composite of 
all (observed and unobserved) alternative causes of 
e. “Alternative causes” of e include all and only those 
causes of e that are not on the same causal path to e 
as c. Th us, c can be thought of as a composite that 
includes all causes on the same causal path as c pre-
ceding e. Th is partitioning is a general structure that 
maps onto all learning situations involving candi-
date causes and eff ects that are binary variables with 
a “present” and an “absent” value. We focus on this 
type of variables because they best reveal how the 
associative and causal views diff er.

Th e unobservable probability with which c pro-
duces e (i.e., the probability that e occurs as a result of 
c occurring), termed the generative causal power of c 
with respect to e, is represented by a variable, qc. When 
ΔP ≥ 0, qc is the desired unknown. Likewise, when 
ΔP ≤ 0, the preventive causal power of c, denoted by 
pc, is the desired unknown. Two other relevant theo-
retical unknowns are qa, the probability with which a 
produces e when it occurs, and P(a), the probability 
with which a occurs. Th e composite a may include 
unknown or unobservable causes. Because any causal 
power variable may have a value of 0, or an unknown 
or undefi ned value, these variables are merely hypoth-
eses—they do not presuppose that c and a indeed 
have causal infl uence on e. Th e idea of a cause pro-
ducing an eff ect and of a cause preventing an eff ect are 

primitives in the theory (see Goodman, Ullman, & 
Tenenbaum, 2011, and Tenenbaum, Kemp, Griffi  ths 
& Goodman, 2011, for an alternative view).

Th e theory assumes four general simplifying 
beliefs (Cheng, 1997; Novick & Cheng, 2004):

1) c and a infl uence e independently,
2) a could produce e but not prevent it,
3) causal powers are independent of the 

frequency of occurrences of the causes (e.g., the 
causal power of c is independent of the frequency 
of occurrence of c), and 

4) e does not occur unless it is caused.

Assumption 1 is a leap of faith inherent to this 
incremental learning variant of causal discovery. 
Th is is the defeasible default assumption we termed 
“causal invariance” earlier. Two causes infl uencing 
eff ect e “independently” means that the infl uence of 
each on e remains unchanged regardless of whether 
e is infl uenced by the other cause. Assumption 2 is 
likewise a default hypothesis, adopted unless evidence 
discredits it. (Alternative models apply if assumption 
1 or 2 is discredited; see Novick & Cheng 2004; see 
Cheng, 2000, for implications of the relaxation of 
these assumptions.) Th is set of assumptions, which 
is stronger than that assumed in standard Bayes nets, 
enables causal relations to be learned one at a time, 
when there is information on only the occurrences of 
two variables, a single candidate cause and an eff ect. 
Th e type of learning described by the theory therefore 
requires less processing capacity. It is assumed that, 
as in associative models, when there is information 
on which variable is an eff ect, the causal learner iter-
ates through candidate causes of the eff ect, grouping 
all potential causes other than the candidate in ques-
tion as the composite alternative cause. Otherwise, 
the causal learner iterates through all possible vari-
able pairs of candidate causes and eff ects.

Th ese assumptions imply a specifi c function for 
integrating the infl uences of multiple causes (Cheng, 
1997; Glymour, 2001), diff erent from the additive 
function assumed by associative models. For the 
situation in which a potentially generative candi-
date cause c occurs independently of other causes, 
the probability of observing the eff ect e is given by a 
noisy-OR function,

 ( | ; , )a c c a c aP e c w q q c w q c w+ = ⋅ + − ⋅ ⋅  (3)

where c ∈ {0,1} denotes the absence and the pres-
ence of the candidate cause c. Recall that in our 
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equations we denote the “presence” value of a binary 
variable by a “+” superscript and the “absence” value 
by a “–” superscript. In contrast, variables have no 
superscripts. As just mentioned, variable qc repre-
sents the generative power of the candidate cause 
c. Because it is not possible to estimate the causal 
power of unobserved causes, variable wa represents 
P(a+)․qa  . In the preventive case, the same assump-
tions are made except that c is potentially preven-
tive. Th e resulting noisy-AND-NOT integration 
function for preventive causes is

 
+ = − ⋅,( | ; ) (1 )a

c a cP e c w p w p c , (4)

where pc is the preventive causal power of c.
Using these “noisy-logical” integration functions 

(terminology due to Yuille & Lu 2008), Cheng 
(1997) derived normative quantitative predictions 
for judgments of causal strength. Under the afore-
mentioned set of assumptions, the causal power 
theory explains the two conditional probabilities 
defi ning ΔP as follows:

 ( | ) ( | ) ( | )c a c aP e c q P a c q q P a c q+ + + + + += + ⋅ − ⋅ ⋅
 

(5)

 ( | ) ( | ) aP e c P a c q+ − + −= ⋅  (6)

Equation 5 “explains” that given that c has occurred, 
e is produced by c or by the composite a, nonexclu-
sively (e is jointly produced by both with a probability 
that follows from the independent infl uence of c and 
a on e). Equation 6 “explains” that given that c did 
not occur, e is produced by a alone.

Explaining the Role of “No Confounding” 
and Why Manipulation Encourages Causal 
Inference But Does Not Guarantee Success

It follows from Equations 3 and 4 that

 ( | ) ( | )c c a c aP q P a c q q P a c q+ + + +Δ = + ⋅ − ⋅ ⋅  
  ( | ) aP a c q+ −− ⋅  (7)

From Equation 7, it can be seen that there are 
four unknowns: qc, qa, P(a+|c+), and P(a+|c−)! It fol-
lows that in general, despite ΔP having a defi nite 
value, there is no unique solution for qc. Th is fail-
ure to solve for qc corresponds to our intuition that 
covariation need not imply causation.

When there is no confounding. Now, in the special 
case in which a occurs independently of c (e.g., when 
alternative causes are held constant), P(a+ | c+) = 
P(a+ | c−). If one is willing to assume “no confound-
ing,” then making use of Equation 6, Equation 7 
simplifi es to Equation 8,

 
1 ( | )c

P
q

P e c+ −

Δ
=

−
 (8)

in which all variables besides qc are observable. In 
this case, qc can be solved. Being able to solve for qc 
only under the condition of independent occurrence 
explains why manipulation by free will encourages 
causal inference in everyday reasoning—alternative 
causes are unlikely to covary with one’s decision to 
manipulate. For the same reason, it explains the role 
of the principle of control in experimental design.

At the same time, the necessity of the “no con-
founding” condition explains why causal inferences 
resulting from interventions are not always correct; 
although alternative causes are unlikely to covary 
with one’s decision to manipulate, they still may do 
so, as our needle-puncture allergy example illustrates. 
Note that the “no confounding” condition is a result 
in this theory, rather than an unexplained axiomatic 
assumption, as it is in current scientifi c methodol-
ogy (also see Dunbar & Klahr, Chapter 35).

An analogous explanation yields pc, the power of 
c to prevent e

 
( | )c

P
p

P e c+ −

−Δ
=  (9)

Griffi  ths and Tenenbaum (2005) showed that if 
one represents uncertainty about the estimates of 
causal power by a distribution of the likelihood of 
each possible strength given the data, then Equation 
8 and 9, respectively, are maximum likelihood point 
estimates of the generative and preventive powers of 
the candidate cause; that is, they are the peak of the 
posterior likelihood distributions.

Explaining Two Ceiling Eff ects
Equations 8 and 9 explain why ceiling eff ects block 

causal inference and do so under diff erent conditions 
for evaluating generative and preventive causal infl u-
ence. When the outcome does not occur at either a 
ceiling (i.e., extreme) level, both equations yield either 
causal power of 0 when the occurrence of c makes no 
diff erence to the occurrence of e (ΔP = 0). When e 
always occurs (i.e., P(e+|c+) = P(e+|c−) = 1) regardless 
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of the manipulation, however, qc in Equation 8 (the 
generative case) is left with an undefi ned value. In 
contrast, in the preventive case, when e never occurs 
(i.e., P(e+|c+) = P(e+|c−) = 0), again regardless of the 
manipulation, pc in Equation 9 is left with an unde-
fi ned value.4

As we mentioned, most causes are complex, 
involving not just a single factor but a conjunction 
of factors operating in concert, and the assumption 
that c and a infl uence e independently may be false 
most of the time. When this assumption is violated, 
if an alternative cause (part of a) is observable, the 
independent infl uence assumption can be given up 
for the observable alternative cause, and progres-
sively more complex causes can be evaluated using 
the same distal approach that represents causal 
powers (see Novick & Cheng, 2004, for an exten-
sion of this approach to evaluate conjunctive causes 
involving two factors). Even if alternative causes are 
unknown, however, Cheng (2000) showed that as 
long as they occur with about the same probability 
in the learning context as in the generalization con-
text, predictions according to simple causal power 
involving a single factor will hold.

Some have claimed that the causal power approach 
cannot account for reasoning that combines obser-
vations with interventions. As just shown, however, 
this approach explains the role of interventions in 
causal learning and how it diff ers from observa-
tion. Likewise indicating that this approach readily 
accommodates the combination, Waldmann et al. 
(2008) derived an equation under the causal power 
assumptions that explains Blaisdell et al.’s results 
regarding the distinction between observations and 
interventions in diagnostic reasoning.

Experimental Tests of a Causal Approach
We examine three fi ndings in support of the 

causal approach. None of these fi ndings can be 
explained by the associative view, even when aug-
mented with the assumption that only interven-
tions enable causal inference. Th e fi rst two fi ndings 
test the two leaps of faith: that causal relations exist 
and that they are invariant across contexts. Th e fi rst 
fi nding concerns the independent causal infl uence 
assumption as manifested in a qualitative pattern of 
the infl uence of P(e+|c+), the base rate of e, for candi-
date causes with the same ΔP. Th e second illustrates 
the parsimony of a causal explanation that assumes 
independent causal infl uence across diff erent types 
of “eff ect” variables, specifi cally, dichotomous and 
continuous (Beckers, De Houwer, Pineno, & Miller, 

2005; Beckers, Miller, De Houwer, & Urushihara, 
2006; Lovibond et al., 2003). Th e third concerns 
the test reviewed earlier of the distinction between 
observation and intervention (“seeing” vs. “doing”) 
in diagnostic causal inference (Blaisdell et al., 2006; 
Waldmann & Hagmayer, 2005). We consider expla-
nations of this distinction as an illustration of the 
compositionality of the causal view and of the role 
of deductive reasoning in causal inference.

The Independent Causal Influence 
Assumption Affects Causal Judgments: 
Base- Rate Influence on Conditions With 
Identical ΔP

As we noted, a major purpose of causal discovery 
is to apply the acquired causal knowledge to achieve 
goals, and that the independent causal infl uence 
assumption is a leap of faith that justifi es general-
ization from the learning context to the application 
context. Here, we see that the assumption leads to 
causal judgments that diff er from those predicted 
by associative models, even those augmented with 
a privileged status for interventions and other 
principles of experimental design. In other words, 
this assumption not only aff ects the application of 
causal knowledge, it aff ects the very discovery of 
that knowledge itself.

Do people have this leap of faith? Let us examine 
the predictions based on the causal power assump-
tions in greater detail. If we consider Equation 8, 
for any constant positive ΔP, generative causal rat-
ings should increase as P(e+|c−) increases. Conversely, 
according to Equation 9, for any constant negative 
ΔP, preventive causal ratings should decrease as 
P(e+|c−) increases. On the other hand, according to 
both equations, zero contingencies should be judged 
as noncausal regardless of the base rate of e except 
when the base rate is at the respective ceiling levels.

No associative model of causal inference, descrip-
tive or prescriptive, predicts this qualitative pattern 
of the infl uence of the base rate of e. Normative 
models are symmetric around the probability of .5 
and therefore do not predict an asymmetric pattern 
either for generative causes alone or for preventive 
causes alone. Although some psychological associa-
tive learning models can explain one or another part 
of this pattern given felicitous parameter values, the 
same parameter values will predict notable devia-
tions from the rest of the pattern. For example, in 
the RW, if βUS > β¬US causal ratings for generative 
and preventive causes will both increase as base-rate 
increases , whereas they will both decrease as base-rate 
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increases if the parameter ordering was reversed. No 
consistent parameter setting will predict opposite 
trends for generative as for preventive causes for the 
same change in the base rate of e. Another promi-
nent associative learning model, Pearce’s (1987) 
model of stimulus generalization, can account for 
opposite base rate infl uences in positive and nega-
tive contingencies if the parameters are set accord-
ingly, but this model would then predict a base-rate 
infl uence on noncontingent conditions.

Figure 12.3 illustrates the intuitiveness of a 
deviation from ΔP. Th e reasoning is counterfactual. 
P(e+|c−), 1/3 in the fi gure, estimates the “expected” 
probability of e in the presence of c, if c had been absent 
so that only causes other than c exerted an infl uence 
on e. A deviation from this counterfactual probabil-
ity is evidence for c being a simple cause of e. Under 
the assumption that the patients represented in the 
fi gure were randomly assigned to the two groups, 
one that received the drug and another that did not, 
one would reason that about 1/3 of the patients in 
the “drug” group would be expected to have 

headache if they had not received the drug. For 
the remaining patients—the 2/3 who did not have 
already have headaches caused by other factors—the 
drug would be the sole cause of headaches. In this 
subgroup, headache occurred in 3/4 of the patients. 
One might therefore reason, one’s best guess for the 
probability of the drug producing headache is 3/4. 
If one assumes that for every patient in the control 
group, regardless of whether the patient had a head-
ache, the drug causes headache with a probability of 
3/4, this estimate would result. Among those who 
already had a headache produced by alternative 
causes, headache due to the drug is not observable.

In contrast, consider what estimate would result 
if one assumes instead that the drug causes head-
ache with a probability of 1/2, the estimated causal 
strength according to associative models such as 
the ΔP model. Applying that probability to every 
patient, one’s best guess would be that 2/3 of the 
patients would have headaches after receiving the 
medicine, rather than the 5/6 shown in Figure 12.3. 
As should be clear, associative models give estimates 

Results for
side-effect of
medicine: B

These patients did not recive Medicine B:

These patients recived Medicine B:

Legend

This person has a headache

This patient does not have a headache

Fig. 12.3 Example stimulus materials 
from a condition in Buehner et al. (2003). 
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that are inconsistent with the assumption that the 
causes involved infl uenced headache independently, 
even though the additivity in those models is gener-
ally assumed to represent independence, and thus to 
justify generalization to new contexts. Th is incon-
sistency, due to the outcome variable being dichot-
omous, leads to irrational applications of causal 
knowledge to achieve desired outcomes.

Are people rational or irrational in their estimation 
of causal strength? To discriminate between the causal 
power theory and the associative approach, Buehner, 
Cheng, and Cliff ord (2003, Experiment 2) made use 
of the pattern of causal-strength predictions according 
to Equations 8 and 9 just discussed. Th ey gave subjects 
a task of assessing whether various allergy medicines 
have a side eff ect on headaches, potentially caus-
ing headaches or preventing them, when presented 
with fi ctitious results of studies on allergy patients 
(see Fig. 12.3 for an example) in which the patients 
were randomly assigned to two groups, one receiving 
the medicine and the other not. Th e subjects were also 
asked to rate the causal strengths of each candidate 
after viewing the results for each fi ctitious study, using 
a frequentist counterfactual causal question that spec-
ifi ed a novel transfer context: “Imagine 100 patients 
who do not suff er from headaches. How many would 
have headaches if given the medicine?” Th e novel 
context for assessing generative causal power, as just 
illustrated, is one in which there are no alternative 
generative causes of headache. By varying the base rate 
of the target eff ect, for both generative and preventive 
causes, the experiment manipulated (1) causal power 
while keeping ΔP constant, (2) ΔP while keeping 
causal power constant. Th e experiment also manipu-
lated the base rate of e for noncontingent candidate 
causes. Th eir results clearly indicate that people make 
the leaps of faith assumed by the causal power theory, 
contrary to the predictions of all associative models, 
including normative associative models.

Integrating Causal Representation 
With Bayesian Inference: Representing 
Uncertainty and Evaluating Causal 
Structure

Th e reader might have noticed that, just like the 
ΔP rule, the point estimate of causal power in the 
causal power theory (Equations 8 and 9) is insensitive 
to sample size. As initially formulated, the theory did 
not provide any general account of how uncertainty 
impacts causal judgments. Th e point estimates are the 
most likely strength of the causal link that would have 
produced the observed data, but causal links with other 

strength values, although less likely to have produced 
the data, could well have also, for smaller sample sizes 
more so than for larger sizes. Th e lack of an account 
of uncertainty in early models of human causal learn-
ing, together with methodological problems in some 
initial experiments testing the causal power theory 
(see Buehner et al., 2003), contributed to prolong-
ing the debate between proponents of associationist 
treatments and of the causal power theory. For some 
data sets (e.g., Buehner & Cheng, 1997; Lober & 
Shanks, 2000), human causal-strength judgments 
for some conditions were found to lie intermediate 
between the values predicted by causal power versus 
ΔP. Th is pattern was especially salient for studies in 
which the causal question, which was ambiguously 
worded, could be interpreted to concern confi dence 
in the existence of a causal link. Intriguingly, a subtle, 
statistically insignifi cant, but consistent trend toward 
this pattern seemed to occur even for the disambigu-
ated counterfactual question illustrated earlier. Th ese 
deviations from the predictions of the causal power 
theory perhaps refl ect the role of uncertainty, which 
is outside the scope of the theory.

An important methodological advance in the past 
decade is to apply powerful Bayesian probabilistic 
inference to causal graphs to explain psychologi-
cal results (e.g., Griffi  ths & Tenenbaum, 2005; Lu 
et al., 2008; Tenenbaum et al., 2011; see Griffi  ths, 
Tenenbaum, & Kemp, Chapter 3; for a review of 
recent work, see Holyoak & Cheng, 2011). Th is 
new tool enables rationality in causal inference to be 
addressed more fully. For example, it enables a rich 
representation of uncertainty and a formulation of 
qualitative queries regarding causal structure.

Griffi  ths and Tenenbaum (2005; Tenenbaum 
& Griffi  ths, 2001) proposed the causal support 
model, a Bayesian model that addresses the causal 
query, termed a “structure” judgment, which aims 
to answer, “How likely is it that a causal link exists 
between these two variables?” Th is is in contrast to 
the causal query regarding causal strength that has 
been emphasized in previous psychological research 
on causal learning. Strength judgment concerns the 
weight on a causal link, which aims to answer the 
query, “What is the probability with which a cause 
produces (alternatively, prevents) an eff ect?”

In terms of the graphs in Figure 12.4, the causal 
support model aims to account for judgments as to 
whether a set of observations (D) was generated by 
Graph 1, a causal structure in which a link may exist 
between candidate cause C and eff ect E or by a causal 
structure in which no link exists between C and E 
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(Graph 0). Causal-strength models, by contrast, aim 
to account for people’s best estimates of the weight 
w1 on the link from C to eff ect E in Graph 1 that 
generated D, with w1 ranging from 0 to 1.

In the causal support model, the decision vari-
able is based on the posterior probability ratio of 
Graphs 1 and 0 by applying Bayes’ rule. Support is 
defi ned as:

 ( | 1)
support log .

( | 0)
P D Graph
P D Graph

=  (10)

Associative Versus Causal Bayesian 
Models: Uniform Versus Sparse and 
Strong Priors

Note that adopting Bayesian inference is entirely 
orthogonal to the longstanding debate between causal 
and associationist approaches. Because mathematics 
is a tool rather than an empirical theory, the Bayesian 
approach can be causal or associative depending on 
whether causal assumptions are made, even while they 
are applied to supposedly causal graphs. As Griffi  ths 
and Tenenbaum (2005) had noted, a Bayesian model 
can incorporate either the noisy-logical integration 
functions derived from the causal power theory or 
the linear function underlying the Rescorla-Wagner 
model and the ΔP rule. In addition, a Bayesian analy-
sis can be applied to both strength and structure judg-
ments, as well as to other types of causal queries, such 
as causal attribution. For strength judgments, rather 
than basing predictions on the peak of the posterior 
distribution of w1 in Graph 1, which corresponds 
to causal power and ΔP according to the respective 
models, a natural Bayesian extension of the causal 
power theory would base predictions on other func-
tions of the posterior distribution of w1, such as its 
mean. Th us, for the fi ctitious data regarding the side 

eff ect of an allergy medicine in Figure 12.3, rather 
than estimating that the medicine causes headache 
with a probability of 3/4 or 1/2, as predicted by the 
causal and associative causal-strength models, respec-
tively, the estimate would fall slightly below 3/4, in 
between those estimates.

Lu et al. (2008) developed and compared several 
variants of Bayesian models as accounts of human 
judgments about both strength and structure. In 
addition to directly comparing predictions based on 
these alternatives, Lu et al. considered two diff erent 
sets of priors on causal strength. One possible prior 
is simply a uniform distribution, as assumed in the 
causal support model. Th e alternative “generic” (i.e., 
domain-general) prior tested by Lu et al. is based 
on the assumption that people prefer parsimonious 
causal models (Chater & Vitányi, 2003; Lombrozo, 
2007; Novick & Cheng, 2004). Sparse and strong 
(SS) priors imply that people prefer causal models 
that minimize the number of causes of a particular 
polarity (generative or preventive) while maximiz-
ing the strength of each individual cause that is in 
fact potent (i.e., of nonzero strength).

Th e sparse and strong priors, although admitted 
post hoc, point to the role of parsimony in explana-
tion, an interesting issue for future research. When 
one is presented with a Necker cube, for example, 
one perceives two possible orientations. Th e human 
perceptual system has implicitly screened out the 
infi nitely many other possible non-cube-shaped 
objects that would project the same eight corners 
onto our retina. Th e visual system makes a parsi-
mony assumption: It favors the simplest “explana-
tions” of the input on our retina. Th e human causal 
learning appears to similarly favor parsimonious 
causal explanations.

For all four Bayesian models, Lu et al. (2008) 
compared the average observed human strength 
rating for a given contingency condition with the 
mean of w1 computed using the posterior distribu-
tion. Model fi ts revealed that the two causal variants 
based on the noisy-logical integration function were 
much more successful overall than the associative 
variants. For datasets from a meta-analysis based on 
17 experiments selected from 10 studies in the lit-
erature (Perales & Shanks, 2007; see also Hattori 
& Oaksford, 2007), the causal Bayesian models 
(with one or zero free parameters) performed at 
least as well as the most successful nonnormative 
model of causal learning (with four free param-
eters) and much better than the Rescorla-Wagner 
model. Th us, although both causal and associative 
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approaches can be given a Bayesian formulation, the 
empirical tests of human causal learning reported by 
Lu et al. favor the causal Bayesian formulation, pro-
viding further evidence for the rationality of human 
causal inference.

Lu et al. (2008) also evaluated structure ana-
logs of the two causal variants of Bayesian strength 
models as accounts for observed structure judg-
ments from experiments in which participants were 
explicitly asked to judge whether the candidate 
was indeed a cause. Relative to the support model, 
human reasoners appear to place greater emphasis 
on causal power and the base rate of the eff ect, and 
less emphasis on sample size.

The Independent Causal Influence 
Assumption for Dichotomous and 
Continuous Outcome Variables

Across multiple studies on humans (Beckers, 
de Houwer, Pineno, & Miller, 2005; De Houwer, 
Beckers, & Glautier, 2002; Lovibond et al., 2003) 
and even rats (Beckers, Miller, De Houwer, & 
Urushihara, 2006), an intriguing set of fi ndings 
has emerged, showing that information regarding 
the additivity of the causal infl uences of two causes 
and the range of magnitudes of the outcome both 
infl uence judgments regarding unrelated candidate 
causes of that outcome. We illustrate the fi nd ing 
with parts of a broader study by Lovibond et al. 
(2003). In a backward blocking design, cues A and 
B (two food items) in combination were paired 
with an outcome (an allergic reaction); in a second 
phase, cue B alone was paired with the outcome. 
Th us, target cue A made no diff erence to the occur-
rence of the outcome (holding B constant, there was 
always an allergic reaction regardless of whether A 
was there). Th e critical manipulation in Lovibond 
et al. was a “pretraining compound” phase during 
which one group of subjects, the ceiling group, saw 
that a combination of two allergens produced an 
outcome at the same level (“an allergic reaction”) 
as a single allergen (i.e., the ceiling level). In con-
trast, the nonceiling group saw that a combination 
of two allergens produced a stronger reaction (“a 
STRONG allergic reaction”) than a single allergen 
(“an allergic reaction”). Following this pretraining 
phase, all subjects were presented with information 
regarding novel cues in the main training phase. 
Critically, the outcome in this training phase always 
only occurred at the intermediate level (“an allergic 
reaction”), both for subjects in the ceiling and non-
ceiling groups.

As a result of pretraining, however, subjects’ 
perception of the nature of the outcome in this 
phase would be expected to diff er. For the exact 
same outcome, “an allergic reaction,” the only 
form of the outcome in that phase, whereas the 
ceiling group would perceive it to occur at the ceil-
ing level, the nonceiling group would perceive it 
to occur at an intermediate level. As mentioned, 
for both groups, cue A made no diff erence to the 
occurrence of the outcome. Because the causal 
view represents causal relations separately from 
covariation, it explains why when the outcome 
occurs at a ceiling level, the generative eff ect of a 
cause has no observable manifestation. At a non-
ceiling level, causal and associative accounts coin-
cide: Th e most parsimonious explanation for no 
observable diff erence is noncausality. However, 
at the ceiling level, observing no diff erence does 
not allow causal inference, as explained by the 
causal power theory. In support of this interpreta-
tion, the mean causal rating for cue A was reliably 
lower for the nonceiling group than for the ceiling 
group. 

Beckers et al. (2005) manipulated pretraining 
on possible levels of the outcome and on the addi-
tivity of the infl uences of the cues separately and 
found that each type of pretraining had an enor-
mous eff ect on the amount of blocking. Beckers 
et al. (2006) obtained similar results in rats. Th ese 
and other researchers have explained these results 
in terms of the use of propositional reasoning to 
draw conclusions regarding the target cue (Beckers 
et al., 2005, 2006; Lovibond et al., 2003; Mitchell 
et al., 2009). For example, a subject might reason: 
“If A and B are each a cause of an outcome, the 
outcome should occur with a greater magnitude 
when both A and B are present than when either 
occurs by itself. Th e outcome in fact was not stron-
ger when A and B were both present as when B 
occurred alone. Th erefore, A must not be a cause of 
the outcome.” Th ese researchers have explained the 
impact of the pretraining in terms of learning the 
appropriate function for integrating the infl uences 
of multiple causes in the experimental materials 
(e.g., additivity vs. subadditivity) from experiences 
during the pretraining phase, in line with proposals 
by Griffi  ths and Tenenbaum (2005) and Lucas and 
Griffi  ths (2010).

It is important to distinguish between domain-
specifi c integrating functions that are the outputs 
of causal learning, and domain-independent inte-
grating functions that enable an output, in view of 
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the essential role they play in the inference process. 
In the causal power theory, the latter are the noisy-
logicals: functions representing independent causal 
infl uence. As seen in the preceding section, whether 
independent causal infl uence is assumed in the infer-
ence process leads to diff erent causal judgments. 
Moreover, independent causal infl uence enables 
compositionality. Even if we were to disregard the 
role of that assumption in the inference process, 
without it generalization of the acquired causal 
knowledge to new contexts would be problematic: 
If integrating functions were purely empirically 
learned, every new combination of causes, such as 
the combination of a target cause with unobserved 
causes in a new context, would require new learning 
(i.e., causal inference would not be compositional).

An alternative interpretation of Lovibond et al.’s 
(2003) results is that for all types of outcome vari-
ables, independent causal infl uence is always the 
default assumed in the causal discovery process, but 
the mathematical function defi ning independent 
infl uence diff ers for diff erent types of outcome vari-
ables. For continuous outcome variables, indepen-
dent causal infl uence is represented by additivity, as is 
generally known; for dichotomous outcome variables, 
independent causal infl uence is represented by the 
noisy-logicals, as explained earlier (see pp. 219–220 
& 222–223). Th e unifying underlying concept is 
the superposition of the infl uences, a concept bor-
rowed from physics. Under this interpretation, the 
pretraining conveys information on the nature of the 
outcome variable: continuous or dichotomous. Th us, 
subjects in their ceiling group, who received pretrain-
ing showing that two food items in combination pro-
duced an “allergic reaction” just as each item alone 
did, learned that the outcome is dichotomous. But 
subjects in their nonceiling group, who received pre-
training showing that two food items in combination 
produced a stronger allergic reaction than each item 
alone, learned that the outcome is continuous.

Intervention Versus Observation and 
Diagnostic Causal Inference

A hallmark of a rational causal reasoner is the 
ability to formulate fl exible and coherent answers to 
diff erent causal queries. A goal of accounts of causal 
inference is to explain that ability. We have illus-
trated the causal view’s answers to queries regarding 
causal strength and structure. (For formulations of 
answers to questions regarding causal attribution 
[how much an target outcome is due to certain 
causes], see Cheng & Novick, 2005; for answers to 

questions regarding enabling conditions, see Cheng 
& Novick, 1992.) Let us consider here answers to 
queries involving diagnostic causal inference, infer-
ence from the occurrence of the eff ect to the occur-
rence of its causes. Recall Blaisdell et al’s (2006) 
fi nding regarding rats’ ability to distinguish between 
an event that is merely observed and one that fol-
lows an intervention. When a tone that occurred 
only when a light occurred during the learning 
phase was merely observed in the test phase, the 
rats in the experiment (the Observe group) nose-
poked into the food bin more often than when the 
tone occurred immediately after that rats pressed a 
lever newly inserted in the test phase (the Intervene 
group). Th e Observe rats apparently diagnosed that 
the light must have occurred, whereas the Intervene 
rats diagnosed that it need not have occurred; light 
was never followed by food in the test phase.

Blaisdell et al.’s (2006) results were initially inter-
preted as support for causal Bayes nets. Note that the 
diff erent diagnostic inferences in the two groups are 
consistent with simple deductive inference. For the 
Observe group, because the light was the only cause 
of the tone, when the tone occurred, the light must 
have occurred. For the Intervene group, because 
both the lever press and the light caused the tone, 
the tone occurring need not imply that the light 
occurred. Because causal Bayes nets (Pearl, 2000; 
Spirtes et al., 1993/2000) and the causal power 
approach (Waldmann et al., 2008) both make use 
of deductive inference, it is not surprising that they 
can also explain diagnostic reasoning.

Th e graphs in causal Bayes nets are assumed to 
satisfy the Markov condition, which states that for 
any variable X in the graph, conditional on its par-
ents (i.e., the set of variables that are direct causes 
of X), X is independent of all variables in the graph 
except its descendents (i.e., its direct or indirect 
eff ects). A direct eff ect of X is a variable that has 
an arrow directly from X pointing into it, and an 
indirect eff ect of X is a variable that has a path-
way of arrows originating from X pointing into it. 
Candidate causal networks are evaluated by assessing 
patterns of conditional independence and depen-
dence entailed by the networks using the Markov 
and other assumptions. Candidate causal networks 
that are inconsistent with the observed pattern of 
conditional independence are eliminated, and the 
remaining candidate causal networks form the basis 
of causal judgments.

Th e causal Bayes nets approach explains Blaisdell 
et al.’s results by a distinction it makes between 
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intervening to set a variable at a specifi c value and 
merely observing that value. As illustrated in Figure 
12.5a, observing T allows diagnostic inference 
regarding L because of the arrow from L to T. But 
intervening to produce T severs all other incoming 
arrows into T, a result called graph surgery, so that 
the resulting causal network no longer has the arrow 
from L to T (see Fig. 12.5b).

Although this approach explains the results in 
the test phase if one assumes that the rats inferred 
the causal structure intended by the researchers, 
namely, that L is the common cause of T and F (see 
Fig. 12.5a), the perfect negative correlation between 
T and F conditional on L during the learning phase 
in fact violates the Markov assumption applied to 
this causal structure (see Rehder & Burnett, 2005; 
Steyvers et al., 2003 for human results indicat-
ing violations of the Markov assumption). Causal 
Bayes nets therefore predict from the learning 
phase data that there is some inhibitory connection 
between T and F, and that both the Intervention 
and Observation rats should equally avoid going 
to the food bin when T occurred, contrary to the 
responses observed.

An alternative solution, one that causal psycholog-
ical theories (e.g., Cheng, 1997, 2000; Waldmann 
et al., 2008) inherited from traditional associative 
accounts (e.g., Rescorla & Wagner, 1972) is that 
people (and perhaps other species) incrementally 
construct causal networks by evaluating one (pos-
sibly conjunctive or otherwise complex) causal rela-
tion involving a single target eff ect at a time, while 
taking into consideration other causes of the eff ect. 
Motivated by consideration of limited process-
ing capacity and of limited access to information 
at any one time, the incremental feature is shared 
by associative theorists (e.g., Jenkins & Ward, 
1965 Rescorla & Wagner, 1972). Notably, whereas 
standard Bayes nets fail to explain Blaisdell et al.’s 
results, the incremental approach fully explains 
them. One diff erence is that the Markov assump-
tion plays a diff erent role in the latter approach: It 
is the consequence of the causal power assumptions 

(specifi cally, the independence assumptions), rather 
than a constraint used for generating the inferences. 
Th us, noticing the negative correlation takes eff ort 
and thus need not occur until there is suffi  cient 
training, as is consistent with the fi ndings in rats 
(Savastano & Miller, 1998; Yin, Barnet, & Miller, 
1994).

In summary, the three lines of evidence just dis-
cussed all lie beyond even the augmented associa-
tive view. Th ey converge in their support for the two 
leaps of faith underlying the causal view, as well as 
for the conviction that the causal world is logically 
consistent.

Time and Causality: Mutual Constraints
We have concentrated on theoretical approaches 

that specify how humans take the mental leap from 
covariation to causation. Irrespective of any diff er-
ences in theoretical perspective, all these approaches 
have in common that they assume that covariation 
can be readily assessed. Th is assumption is refl ected 
in the experimental paradigms most commonly 
used; typically, participants are presented with evi-
dence structured in the form of discrete, simultane-
ous or sequential learning trials in which each trial 
contains observations on whether the cause occurred 
and whether the eff ect occurred. In other words, in 
these tasks it is always perfectly clear whether a cause 
is followed by an eff ect on a given occasion. Such 
tasks grossly oversimplify the complexities of causal 
induction in some situations outside experimen-
tal laboratories: Some events have immediate out-
comes, and others do not reveal their consequences 
until much later. Before an organism can evaluate 
whether a specifi c covariation licenses causal con-
jecture, the covariation needs to be detected and 
parsed in the fi rst place.

Although the problem had been neglected for 
many years, the last decade has seen interesting and 
important developments. It has long been docu-
mented that cause-eff ect contiguity (one of Hume’s 
cues toward causality) appears to be essential for 
causal discovery. Shanks, Pearson, and Dickinson 
(1989), for example, reported that in an impov-
erished computerized instrumental learning task, 
people failed to discriminate between conditions 
where they had strong control over an outcome 
(ΔP = .75) and noncontingent control conditions, 
when their actions and the associated outcomes 
were separated by more than 2 seconds. In a com-
pletely diff erent domain, Michotte (1946/1963) 
found that impressions of causal “launching” only 
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Fig. 12.5 (a) L (Light) causes T (tone) and F (food). (b) Lever 
press and L each causes T.
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occur when the collision of the launcher with the 
launchee is followed immediately by motion onset 
in the launchee: Temporal gaps of 150 ms or more 
destroy the impression.

From a computational perspective, it is easy to 
see why delays would produce decrements in causal 
reasoning performance. Contiguous event pairings 
are less demanding on attention and memory. Th ey 
are also much easier to parse. When there is a tem-
poral delay, and there are no constraints on how 
the potential causes and eff ects are bundled, as in 
Shanks et al. (1989), the basic question on which 
contingency depends no longer has a clear answer: 
Should this particular instance of e be classifi ed as 
occurring in the presence of c or in its absence? Each 
possible value of temporal lag results in a diff erent 
value of contingency. Th e problem is analogous to 
that of the possible levels of abstractions of the can-
didate causes and the eff ects at which to evaluate 
contingency (and may have an analogous solution). 
Moreover, for a given e, when alternative intervening 
events occur, the number of hypotheses to be consid-
ered multiplies. Th e result is a harder, more complex 
inferential problem, one with a larger search space.

Buehner and May (2002, 2003, 2004) have dem-
onstrated that prior knowledge about delayed time 
frames constrains the search process, such that non-
contiguous relations are judged to be just as causal 
as contiguous ones. Buehner and McGregor (2006) 
have further shown that when prior assumptions 
about delays are suffi  ciently salient, contiguous 
relations are perceived as less causal than delayed 
ones—an apparent contradiction to Hume’s tenets.

If causal learning operates according to the prin-
ciples of Bayesian evidence integration, then these 
results on contiguous and delayed causation make 
sense: Reasoners may focus on the expected delay 
for a type of causal relation and evaluate observa-
tions with respect to it. In Bayesian terms, they eval-
uate likelihoods, the probability of the observations 
resulting from a hypothesis. In the earlier demon-
strations of detrimental eff ects of delay (Michotte, 
1946/1963; Shanks et al., 1989), the prior assump-
tion would have been that there is no delay: 
Michotte’s stimuli were simulations of well-known 
physical interactions (collisions), while Shanks et al. 
used computers, which (even in those days!) were 
expected to operate fast. Once these prior assump-
tions are modifi ed via instructions (Buehner & 
May, 2002, 2003, 2004), or via constraints in the 
environment (Buehner & McGregor, 2006), then 
delayed relations pose no problem.

More recent work has found that prior expecta-
tions about time frames are relevant not only for the 
extent of delays but also with respect to their vari-
ability. Consider two hypothetical treatments against 
headache. Drug A always provides relief 2 hours 
after ingestion, while drug B sometimes starts work-
ing after just 1 hour, while other times it can take 3 
hours to kick in. Which would we deem as a more 
eff ective drug? Th e answer to that question depends 
on how exactly temporal extent is interpreted when 
drawing causal conclusions. One possibility would be 
that causal attribution decays over time, similarly to 
discounting functions found in intertemporal choice 
(for an overview, see Green & Myerson, 2004). Under 
such an account, the appeal of a causal relation would 
decay over time according to a hyperbolic function.

One consequence of hyperbolic discounting is 
that variable relations may appear more attractive 
than stable ones, even when they are equated for 
mean expected delay. Th is conjecture is rooted in 
the diminishing sensitivity to delay: Variable rela-
tions accrue more net strength than constant rela-
tions matched for mean delay. And indeed, Cicerone 
(1976) has found that pigeons preferred variable 
over constant delays of reinforcement. Th us, if 
human causal learners approach time in a similar 
manner (and apply well-established principles of 
discounting as regards to intertemporal choice), 
we would expect drug B to emerge as the favorite. 
Interestingly, the opposite is the case: Greville and 
Buehner (2010) found that causal reasoners consis-
tently prefer stable, predictable relations. Presumably 
we have strong a priori expectations that (most) 
causal relations are associated with a particular, rela-
tively constant time frame. Where such expectations 
are violated, less learning takes place.

Cause-eff ect timing not only impacts assessments 
of causal strength but critically also constrains our 
ability to infer structure. Pace Hume, causes must 
occur before their eff ects, even though the inter-
vening interval may extremely closely approximate 
0 (e.g., the interval between a fi st’s contact with a 
pillow and the pillow’s indentation, the interval 
between a cat walking into the sun and its shadow 
appearing on the ground). While such consider-
ations are relatively trivial when there are only two 
variables involved, fi nding structure in multivari-
able causal systems gets increasingly diffi  cult as the 
size of the system grows. Moreover, many structures 
are Markov-equivalent (Pearl, 2000), meaning that 
they cannot be distinguished by mere observation 
of the statistical patterns they produce. Lagnado 
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and Sloman (2004, 2006) have shown that in such 
situations, people rely on temporal ordering to infer 
causal structure. More specifi cally, temporal order 
constrains structure inference to a greater extent than 
the observed patterns of statistical dependencies.

As we highlighted earlier, cognitive science 
approaches to causality are rooted in the Humean 
conjecture that causality is a mental construct, 
inferred from hard, observable facts. Recent evidence 
suggests that Hume’s route from sensory experience 
to causal knowledge is not a one-way street but in 
fact goes in both directions. Not only does our sen-
sory experience determine our causal knowledge, but 
causal knowledge also determines our sensory expe-
rience. Th e latter direction of infl uence was fi rst doc-
umented by Haggard, Clark, and Kalogeras (2002), 
who showed that sensory awareness of actions and 
resultant consequences are shifted in time, such that 
actions are perceived as later, and consequences as 
earlier (with reference to a baseline judgment error). 
Causes and eff ects thus mutually attract each other 
in our subjective experience. Originally, the eff ect 
was thought to be specifi c to motor action and 
intentional action control (Wohlschläger, Haggard, 
Gesierich, & Prinz, 2003). Buehner and Humphreys 
(2009), however, have shown that causality is the 
critical component of temporal binding: Intentional 
actions without a clear causal relation do not 
aff ord attraction to subsequent (uncaused) events. 
Moreover, Humphreys and Buehner (2009, 2010) 
have shown that the causal binding eff ect exists over 
time frames much longer than originally reported, 
and outside the range of motor adaptation (Stetson, 
Cui, Montague, & Eagleman, 2006), as would 
be required for action-control based approaches. 
Buehner and Humphreys (2010) have furthermore 
demonstrated a binding eff ect in spatial perception 
using Michottean stimuli—a fi nding that is com-
pletely outside the scope of motor-specifi c accounts 
of binding. It appears as if our perception of time and 
space, and our understanding of causality, mutually 
constrain each other to aff ord a maximally coherent 
and parsimonious experience.

Our chapter has reviewed multiple lines of evi-
dence showing a strong preference for parsimoni-
ous causal explanations. Th is preference holds for 
scientifi c as well as everyday explanations. Among 
the many alternative representations of the world 
that may support predictions equally well, we select 
the most parsimonious. Hawking and Mlodinow 
(2010) note that, although people often say that 
Copernicus’s sun-centered model of the cosmos 

proved Ptoloemy’s earth-centered model wrong, 
that is not true; one can explain observations of the 
heavens assuming either Earth or the sun to be at 
rest. Likewise, although the city council of Monza, 
Italy, barred pet owners from keeping goldfi sh in 
curved fi shbowls—on the grounds that it is cruel to 
give the fi sh a distorted view of reality through the 
curved sides of the bowl—the goldfi sh could poten-
tially formulate a model of the motion of objects 
outside the bowl no less valid as ours. Th e laws of 
motion in our frame are simpler than the fi sh’s, but 
theirs are potentially just as coherent and useful for 
prediction. But the members of the city council of 
Monza, like the rest of us, have such an overpower-
ing preference for the more parsimonious model of 
the world that they perceive it as “truth.”

Conclusions and Future Directions
Our chapter began with the question: With what 

cognitive assets would we endow an intelligent 
agent—one that has processing and informational 
resources similar to humans—so that the agent 
would be able to achieve its goals? We have taken 
the perspective that generalization from the learning 
context to the application context is central to the 
achievement of its goals. From this perspective, we 
fi rst examined the crippling inadequacies of the asso-
ciative view, which attempts to maintain objectivity 
by restricting its inference process to computations 
on observable events only. We considered variants of 
the associative view augmented with a special status 
for interventions and other principles of experimental 
design, in line with typical scientifi c causal inference.

We then considered the causal view, which 
resolves major apparent impasses by endowing the 
agent with two leaps of faith, that (1) the world is 
causal even though causal relations are never observ-
able, and (2) causal laws are uniform and compo-
sitional. Th ese empirical leaps are grounded in the 
conviction that existence is logically consistent. 
Th ey enable the agent to incrementally construct 
an understanding of how the world works and 
coherently generalize its acquired causal knowledge. 
Analysis in cognitive research shows that the com-
mon belief that justifi es the augmented associative 
view—that assumptions about independent causal 
infl uence justify the application of causal knowledge 
to new contexts but do not infl uence the output of 
statistical analyses—is mistaken. Likewise, the com-
mon belief that assumptions about estimations of 
causal strength are secondary, and do not aff ect 
judgments regarding causal structure, is mistaken.
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Remarkably, observed causal judgments reveal 
that humans make those leaps of faith, and that 
their causal judgments are based on a defi nition of 
independent causal infl uence that is logically con-
sistent across the learning and application contexts. 
Th e use of the sharper tool of Bayesian mathematics 
shows even more unequivocal support for the causal 
view. Th is tool also extends the capability to formu-
late answers to diff erent kinds of causal queries.

Th e potential to discover how the world works 
must of course be accompanied by the requisite 
computational capabilities. We have identifi ed three 
intertwined capabilities so far. Th e agent must be able 
to (1) make deductive logical inferences, (2) compute 
statistical regularities, and (3) represent uncertainty. 
Th e last two allow the agent to make progress in the 
face of errors in even its best hypotheses. Th e fi rst is 
an essential component of the parsimony assump-
tion and of coherent and fl exible reasoning.

Th ree outstanding issues seem especially perti-
nent to us in view of our analysis and review. For 
each issue, a rational analysis in tandem with empir-
ical work diff erentiating between alternative plau-
sible explanations would deepen our understanding 
of causal learning.

1. Hypothesis revision: If causal learning is 
incremental, by what criteria do causal learners 
revise their hypotheses, and what do their 
criteria and revisions reveal about the intended 
destination of the revision process? Recent 
research found that for preventers with a narrow 
scope, which violate the independent infl uence 
assumption, people are more likely to posit a 
hidden cause to explain and remove the violation 
(Carroll & Cheng, 2010). Standard causal Bayes 
nets would not interpret the violation to signal a 
need for representation revision.

2. Category formation and causal learning: We 
have taken the perspective that causal discovery 
is the driving force underlying our mental 
representation of the world, not just in the sense 
that we need to know how things infl uence each 
other but also in the sense that causal relations 
defi ne what should be considered things in 
our mental universe (Lewis, 1929). Are causal 
learning and category formation two aspects of 
the same challenge, as the goal of generalization 
of causal beliefs to application contexts 
would suggest? How do people arrive at their 
partitioning of the continuous stream of events 
into candidate causes and eff ects? Likewise, how 
do people arrive at their partitioning of events 

into candidate causes and eff ects at particular 
levels of abstraction? In Lien and Cheng’s (2000) 
experiments, human subjects were presented 
with causal events involving visual stimuli 
for which candidate-cause categories were 
undefi ned; there was no specifi cation of either 
the potential critical features or the relevant 
level of abstraction of the features. It was 
found that subjects seemed to form candidate-
cause categories that maximized ΔP, perhaps 
in an attempt to maximize the necessity and 
suffi  ciency of the cause to produce the eff ect in 
question. Th e topic awaits better formulations 
of explanations as well as additional empirical 
work.

3. Parsimony in causal explanations: We have 
encountered the critical role of parsimony 
in causal explanations multiple times in our 
chapter. Although models of parsimony (e.g., 
Chater & Vitányi, 2003; Lombrozo, 2007) 
are consistent with the psychological fi ndings, 
they do not predict them. Better integration of 
theories of simplicity with theories and fi ndings 
in causal learning would be a major advance.
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Notes
1. More generally, for a causal tree with n nodes, the num-

ber of direct causal links would be n − 1 (because every node 
other than the root node has one and only one arrow going into 
it). But the number of associations between nodes (including 
causal ones) would be n(n − 1)/2, because every node in the tree 
is linked by an arrow to at least one other node, so that there is an 
non-zero association between every pair of nodes.

2. Ulrike Hahn provided this interpretation.
3. Th e example was provided by Sylvain Bromberger.
4. Although the theory obtains diff erent equations for esti-

mating generative and preventive causal powers, the choice 
between the two equations does not constitute a free parame-
ter. Which of the two equations applies follows from the value 
of ΔP. On occasions where ΔP = 0, both equations apply and 
make the same prediction, namely, that causal power should 
be 0, except in ceiling-eff ect situations. Here, the reasoner does 
have to make a pragmatic decision on whether she is evalu-
ating the evidence to assess a preventive or generative rela-
tion, and whether the evidence at hand is meaningful for that 
purpose.
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